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Abstract: In the present paper we will establish some results and properties of
g-generalized Mittag-Leffler function £ gi( q). We will get its convergence condi-
tion, recurrence relation and many other results associated with fractional calculus
such as g-Laplace transform, Riemann-Liouville fractional ¢g-integral operator. We
will also discuss some important special cases of main results.
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1. Introduction

The Mittag-Lefler function has wide applications in many areas of physical sci-
ences, especially in fractional calculus and special functions. The Classical Mittag-
Laffler Function [7] (CMLF) is introduced by Swedish Mathematician Gosta Mittag
Leffler in 1903. This function was defined as follows for z € C, a € C

’I’L

=y ——— Ton T 1) Re(a) > 0 (1.1)

n=0
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Many researchers have extended the research work of Mittag-Leffler function. In
1930, the solution of the Abel- Voltra type equation in terms of Mittag-Leffler func-
tion was given by Hille and Tamarkin [5]. For a € (01], a statistical distribution [5]
was discovered by Pillai (1990) in term of Mittag-Leffler function. This distribution
is defined as

n+1 an

1-— Z 12 >0
Gal2) = il 0‘”+1 (1.2)

0 12 <0

The solution of the kinetic equation N(t) — Ny = —w® ¢D; “N(t) was given by
Mathai, Saxena [5] and Haubold (2002) in term of Mittag-Leffler function such
that

N(t) = NoEo(—w*t?) (1.3)
Various generalizations of the Classical Mittag-Leffler function E,(z) with their
interesting and useful properties have been given by many researchers, which called
Generalized Mittag-Leffler Function (GMLF) or Mittag-Leffler Type Function. A
generalization of F,(z) was studied by Wiman [16], Prabhakar [8], Shukla and
Prajapati [10]. A new generalization of Mittag-Leffler function was defined by
Salim and Faraj [14] for «, 5,7,d € C and s < r + Re(«)

n

EL5 ) = Y e s > Omin(Re(a), Re(3), Re(y), Re(d)} > 0.

n=0
(1.4)
Some useful definitions, which form the basis of the main results, are given below.

2. Definitions
Definition 2.1. For A € C and 0 < |q| < 1, the g-shifted factorial is defined as

(A q)n = 1:[(1 — A\ = %, n €N and (X;q)y=1 (2.1)
k=0 1o
[n]y! = —éq;_q;;n (2.2)

Definition 2.2. The g-analogue of power function (a — b)" is

n—1

(a=b)"=[J(a—bg"): (a=b)°=1 (2:3)

k=0
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b
(a—b)" =a" (E;Q) ; a#0 (2.4)
Definition 2.3. The q-Gamma function [2] is defined by
- 2 \459)oo
L) = (1= @)1 = gy = (1 - g L2 (25
(€% ¢) oo
and
1-— q’\
FA+1) = —T,(V) (2.6)
Definition 2.4. The g-Beta function [2] is defined by
I',(a)T,(b) v
B h) = L/ a a—1l(1 _ d 2.
o) = el = [t - g2, (2.7
Definition 2.5. The g-derivative of function [2] is defined by
f(z) = f(zq
(Duf)(e) = LEZLED g g (2.9
z— 2q
and I 0
_l_
Dm n o __ q n n—m 2.
0 Fq(n—m+1)z (29)
Definition 2.6. The g-integral of function f(z2) is defined by
| @ =al =) 3 o ftaa’) (2.10)
0 n=0
Definition 2.7. The q-Laplace transform [3] is defined as
(¢; @) q’f
LA f(z Z (2.11)
j=0 9);
Definition 2.8. The fractional g-integral operator [6] of order p is defined as
1 z _
B = o [ (2= e O Re@>0 (212
Ly(1) Jo

Definition 2.9. The fractional q-differential operator [6] of order p is defined as

kg Tk— s :
Dl f(z) = DI, " f(2)}; k is the smallest integer s.t. k > Re(u) >0 (2.13)
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3. Main Results

Motivated by the applications of g-extension of various special functions in the
field of mathematics, we have introduced and defined a new generalized Mittag-
Leffler function, called as g-analogue of generalized Mittag-LefHer function Eggsr
(z,q) by the help of equation (1.4) as

00 5. ) .
E'yés 2:iq) = (q 1q)sn ’
«srl%0) ; (4% @)rn Tg(an + )

a,f,7,0 € C; min{Re(a), Re(B), Re(v), Re(d)} > 0
Where (A; q),, is g-shifted factorial and I';(n) is ¢-Gamma function.

n

r,s >0 and s <r+ Re(a), (3.1

Special case of Eggsr( :q)
(a) For r =1, s = 1, Equation (3.1) reduces to ¢-GMLF as defined by Sharma and
Jain [13]

n

3l oy = N D 2
Ea,Bl(Z7q) - nZ:O (q67Q)n Fq<04n+/6)

(b) Putting r =1, 6 =1, s = 1, Equation (3.1) reduces to ¢-GMLF as defined by
Sharma and Jain [12]

= E1%5(29) (3.2)

n

v 11, 0 N - (@ @)n 4 o (.
Bapaz4) —HZ:O (¢;@)n Tylan +3) = Faplz9) (3:3)

(c) On taking r =1,5 =1, s = p and z — z(1 — q), Equation (3.1) reduces to
q-Generalized Mittag-Leffler function as defined by Chanchlani and Garg [3]

. ' (¢ @)pn (2(1 — @)™
EZY,BI( (1—‘1)761):2%(?(]-;])) IE((QTL?;)

(@7 0)pn Z”
—ZF S Tl — Eah() (3.4)

Theorem 3.1. Convergence of Eggsr(z;q):

The q-analogue of generalized Mittag-Leffler function introduced by equation (3.1)
is convergent for |z| < (1 —q)™® when 0 < |q| < 1 and if ¢ — 1 then this is
absolutely convergent for all value of z, provided that s < r + Re(a).

Proof. From the definition of ¢-Generalized Mittag-Leffler function given by the
Equation (3.1), we have

Egg‘i Z om—i—ﬁ Zun say)

n=0 ’
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Un+1
Unp,

by applying ratio test, lim

n—o0

'(qV;Q)sm (@ @)rn  Tylan+p) 2
(Q’YQQ)STL (qg'Q)m—H" (F (om—l—oz—t—ﬁ)) 2"
_’ (@ oo (5 Qoo (7" @)so
@ e (T )0 (7P 0)0

(1—q)"z

' (1-g)* (=g
T (=gt ) (1= g0t

{ (1—¢q)?2] ;0<]gl <1
= as n — oo

0 rq=1

Hence function E’7 ® (2, q) is convergent for 0 < |g| < 1if |z| < (1—¢)~®. Moreover
if ¢ — 1 then equatlon (3.1) coincide with (1.4), which is generalized Mittag-Leffler
function given by Salim and Faraj [14]. which is absolutely convergent for all values
of z provided that s < r + Re(a).

Theorem 3.2. Recurrence Relation:
If o,B,7,0 € C, min{Re(a), Re(8), Re(y), Re(d)} > 0 and r,s > 0 with s <
r + Re(a) then

r y+1
E'y6s ( ) E'y-i—lés(z;q) i q ZE'y—i-l 041, S(Z; q) + q ZE'y—i-l 041, S(QZ;Q)

a,B,r a,B,r ]_—q a,a+8,r 1_q a,atpr
(3.5)
Proof.
E’Y&s(z,q) :i (QW;Q)sn 2" _ +§: 2"

IR e (05q) e Dglan + B) — Ty(B) 4= (an + f)
_ 1 (1 - q’y)<q’y+ aQ)sn s 2"
TG Z @0 T(an+p)
_ 1 = (1 - Q") —q'(1— q")] (q’H- Q) sn—s 2"
0,0 " ,; (4% ¢)rn y(an + 5)
1 — (1= ™)@ Q)oms 2"
B FQ(B) +Zl (q(SQQ)rn Fq<an+6>

o i) M i (@ @on—s  g"2"
(% @)rn Tylan+ j) (% @)rn  Tylan +j)

n=1
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Replacing n by m 4 1 in second and third summation

© qv+ n 0 qv+1 sm+1
Zo (% q)rn Tylan+B) 1—qfSZ o+, Ly(am+ o+ 5)
L —~ (" Qem (q2)™
1— q(S m=0 (q5+1§ Q)rm Fq(am + o+ ﬁ)
— L 53( . ) _ q 'y+1,5+1,s< . ) i QVH FOTLOHL s< . )
= Papr B4 1_q5Z aatfr \F 5 Paatrpr 4554

Special case: On taking r = 1, s = 1, Equation (3.5) reduces to
7+1

5 S/ q S+l q 5 .
Eyg(za) = Ej5(210) — 1= 7 2B () + 7 2B (gz59)

which gives the same result as given by Santosh Sharma and Renu Jain [13] in
2016, page 793.

Theorem 3.3. If the equation (3.1) is satisfied, then

B (21q) = E)5 0 (a20) + 2(1— ) DB (2:0) (3.6)
Proof.
b5y = (@D
Ear(za) = HZ:; (% @)rn Dglan + 3) fz) (say)
_ OO (qvaq)sn qz
=) =2 (¢% @)rn Tylan + B)

s _fE) = fe2)  §(@5De 2 (14"
Dibofr(za) = == — 0 Z( Do Tolan + ) (2 — 2q)

)  (q";q)sn (¢ Q)sn  ¢"2"
zl—qDEgér q) =
(1=q) Bz 4) Z(q‘s'q)m cm+b’ Z (4% Q)rn Tglan + B)

n=

21— q)DyEYY (2:q) = EL%(219) — EX%5 (g2 q)

Theorem 3.4. Riemann-Liouville fractional q-integral ofEZBsT( q): Inggsr( q)
is q-analogue of generalized Mittag-Leffler function (3.1), then for fractional q-
integral operator of order u

],uE’Yt;S( ;CI) — ZuBQ(n+ 1):“)
I'y(w)

a,B,r E;/gi( Q)v Re(lu’) >0 (37>
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Proof. On using equation (3.1) and (2.12), we have

IEYS (21) = thu) /O (2= g€ BT (6 @)t
- thﬂ) /OZ<Z e (g EZZ Z;: Fq(ain—f‘ B)) %
- thu) ; EZ: Z;: Fq(arla +B) /OZ(Z g Tt
> . z a.
- thu) HZ:O EZZ Z)): Fq(ai + 5) /o Zﬂlﬁénd‘ﬁ

setting & = zt, then we get

1 ZOO (@73 q)sn 27 / b latq)
= tn—ood t
Ly() = (%5 @)rn Tolan +B) Jo -~ (¢"t;9),, *

n

By(n+1,p) 5
= [FEYS (2:q) = 2P =L VRTS8 (50
q "B, ( ) qu) B, )
Corollary.
LB} (2:9) = 2B () Re(u) >0 (3.8)

Ly(n+ )0y (1)

Proof. On setting @ =1, f =1 and By(n+ 1,pu) = T,(n+p+1)
g\ [

(3.7)

Special case. Putting r =1, s =1, 6 = 1 in above corollary, we get

in equation

INEY (29) = 2"EY .11 (25 q) (3.9)

which gives the same result as given by Sharma and Jain [12] in 2014, page 617.

Theorem 3.5. If the condition of (3.1) is satisfied, then for v € C, a > 0 and
v#0,—1,-2,-3, ... the following integral formula holds true

1
/ U1 = g2) L5 (w2 q)dyz = T,(0) BV (wig)  (3.10)
0
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Proof. Let

I AT (@3 Q)sn  wW"2P" .
_/0 21— q2)p (Z (@0 Fq(om—l—ﬁ)) d,

sn wn Fq(ﬂ +pn)rq(v)
@ Q)rn Tglan + ) T+ pn +v)

In particular, setting p = o and p = 3, we get

o 3:q)en Dylan + B+ v)

o0 nF
/ P g2) B (02" q)d, :Z a(v)

/ - 1(1 - qz)v 1E’yﬁr(wz 7Q>d = Fq(”)Ez:%j—v,r<w>Q)
0

Theorem 3.6. Fractional q-Derivative oszgsr(z q): ifa,B,v,6 € Candr,s >0

with p=1,2,3,... then
4,8 e 4,8 e
D [AELE (2 0)| = 2P B, (25 ) (3.11)
Proof. Let
flz)=2"" 1E32i< “q)
B 12 (q q)sn 2"
“ (¢ Q)m Ly(an + B)

i
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by the help of equation (2.8)

DB e ) = Y

I ﬁ_z 77575 a,
==z Ea,ﬁ—l,r(z )

Again operating D, both sides, we get

D2 (P EL () ) = OB (%)

a7677‘

If the process is repeated, then we get

o {2 ) = P

avﬁvr 0475_%7"

Corollary. if w any arbitrary constant and v,6 € C, r,s > 0 then following result
hold true

Dy {E?,’f,’i (wz; Q)} = (w2) "B}y, (w2 q);  Re(y) >0,Re(6) >0 (3.12)

1,1—p,r
Proof. Replacing z by wz in equation (3.8), we have

IMETY (wz;q) = (w2)"EB0S L (wz;q)

= RN (weg) = (w2) B, (weig)

Now if k is smallest integer with k& > Re(u), then

DE{ 1Bl wea) | = DE{(w2) B (wzia)}

DyE]T (w2iq) = (w2) " E1YS, (w2;q)

Theorem 3.7. ¢-Laplace Transform of ET%° (z:q);

CY,B,T‘

L, {Eg;g’j(wzp; >} _ li (@7;9)sn Ty(1 +pn) <w(1 - Q)p>" (3.13)

$ = (% @) Ly(an + B) s
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Proof. ¢-Laplace transform of f(z) is given by the definition 2.7 now according

(3.1), we have

L,(an+ )

= (@75)sn WP
= f(s7q") = HZ:O (¢°; q)rn Tylan + )

oo pn
B wia) = 3 (e T = 1) sy

kpn

Now using (3.15) in equation (2.11), we have

n o—pn kpn

(@75 q)en W"s
Ls {E;Yy,é,i CL)Zp } q q 0 (q q)sn
! il Z (a; ) (¢°; @)rn Ty(an + B)

n=0
By interchanging the order of summations

Wwhg~Pn > (1+pn)k

(¢;9) q
SOOZ sn an—i_ﬁ kZ:O
0o

100(Q7Q)sn whs™pPm Lk ) .
s (@™ @) oogq ™
S n=0 (qéa Q)rn Fq(Oén + ﬁ) kZ:O )
Using result » (¢"77;q)oq" ™" = Ty(1+ on)(1 — ¢)
=0

:1 = 1+pn> (w(l—q>p>"

s < (an + 5) sP
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